On the structure of (pan, even hole)-free graphs

Kathie Cameron¹, Steven Chaplick², Chính T. Hoàng³

¹Department of Mathematics, Wilfrid Laurier University (Canada)

²Institut fur Mathematik, Technische Universitat Berlin (Germany)

²Department of Physics and Computer Science, Wilfrid Laurier University (Canada)

June 19, 2015

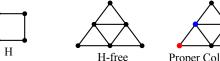
Adriatic Coast Graph Theory 2015.

Support by GraDR EUROGIGA and NSERC.

H-Free Graphs

Definition

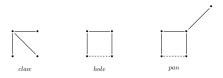
For a graph H, a graph G is H-free, when G does not contain H as an **induced** subgraph.



Proper Colouring

Claws, holes, and pans

We will deal with (claw, even hole)-free graphs Even holes: holes with even length (Pan, even hole)-free graphs S. Olariu introduces pan, proved SPGC for pan-free graphs. Stability number of pan-free graphs is in P (Brandstadt, Lozin, Mosca)



Related Graph Classes and Recognition

Chordal: *G* is hole-free; i.e., $(C_4, C_5, ...)$ -free: **linear time** [Rose, Tarjan, Lueker; SIAM JComp 1976] **Odd-hole-free**; i.e., $(C_5, C_7, ...)$ -free: **OPEN Perfect**: (odd-hole,odd-anti-hole)-free: **polytime** [Chudnovsky, Cornuejols, Liu, Seymour, Vušković; Combinatorica 2005] **Even-hole-free**; i.e., $(C_4, C_6, ...)$ -free: **polytime** (more on this)

Note: Information System on Graph Classes http://www.graphclasses.org/ defines even-hole free as (C_6, C_8, \ldots) -free. C_4 is not excluded, but we do exclude C_4 !!

Finding Even-Holes

- O(n⁴⁰) [Conforti, Cornuéjols, Kapoor, and Vušković; JGT 2002].
- O(n³¹) [Chudnovsky, Kawarabayashi, and Seymour; JGT 2005].
- $\mathcal{O}(n^{19})$ [da Silva and Vušković; JCTB 2013].
- \$\mathcal{O}(m^3n^5)\$ [Chang and Lu; SODA 2012, arxiv 2013].
- In planar: $\mathcal{O}(n^3)$ [Porto; LATIN 1992]
- In claw-free: O(n⁸) [van 't Hof, Kamiński, Paulusma; Algorithmica 2012]
- In circular-arc: O(mn²loglogn) [Cameron, Eschen, Hoàng, Sritharan; 2007]

Combinatorial Optimization Problems

	Clique	Ind. Set	Colouring	Clique cov
Even-Hole-free	Р	?	?	NP-hard
Odd-Hole-free	NP-hard	Р	NP-hard	??
Pan-free	NP-hard	Р	NP-hard	NP-hard
(Pan, Even hole)-free	Р	Р	Р	??

Even-hole-free graphs: $\chi(G) \le 2\omega(G) - 1$ [Addario-Berry, Chudnovsky, Havet, Reed, Seymour; JCTB 2008]

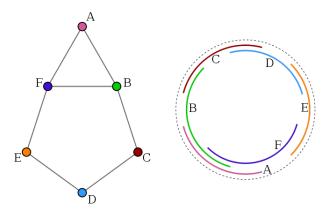
Our Results

Theorem

For a (pan, even-hole)-free graph G, one of the following hold:

- G is a clique.
- G contains a clique cutset.
- G is a unit circular arc graph
- G is the join of a clique and a unit circular arc graph.
 - Recognition in $\mathcal{O}(nm)$ time.
 - Colouring in $\mathcal{O}(n^{2.5} + nm)$ time.

Circular Arc Graphs



"unit" means all arcs have the same length Colouring is NP-complete for circular arc graphs

Our Decomposition Theorem

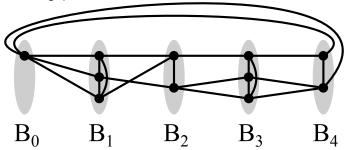
Theorem

For a (pan, even-hole)-free graph G, one of the following hold:

- G is a clique.
- G contains a clique cutset.
- G is an unit circular arc graph.
- G is the join of a clique and a unit circular arc graph.
 - Auxiliary structure generalizing holes: buoy

Holes and Buoys

A length ℓ -buoy has ℓ bags: $B_0, \ldots, B_{\ell-1}$, each bag is a clique, and each vertex in a bag has neighbours in adjacent bags (but not other bags).



Our Decomposition Theorem

Theorem

For a (pan, even-hole)-free graph G, one of the following hold:

- G is a clique.
- G contains a clique cutset.
- G is a buoy*
- G is the join of a clique and a 5-buoy*.

* These buoys are extremely special, as we will see.

Structure of a Buoy

Theorem

If B is a ℓ -buoy in a (pan, even-hole)-free graph, then:

- Each B_i can be ordered by neighbourhood inclusion.
- Either $(B_i \cup B_{i+1})$ or $B_i \cup B_{i-1}$ is a clique.

For efficient recognition:

Theorem

If B is an ℓ -buoy where each B_i can be ordered by neighbourhood inclusion, then every hole in B has length ℓ .

Structure of a Buoy

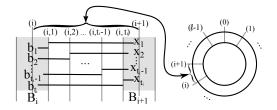
Theorem

If B is a ℓ -buoy in a (pan, even-hole)-free graph, then:

- Each B_i can be ordered by neighbourhood inclusion.
- Either $(B_i \cup B_{i+1})$ or $(B_i \cup B_{i-1})$ is a clique.

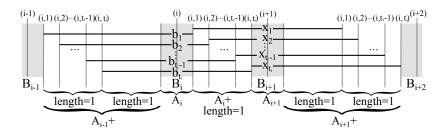
Buoys To Circular Arcs

Remember: each bag is orderable by neighbourhood inclusion.



Buoys To Unit Circular Arcs

Case: $B_i \cup B_{i+1}$ is not a clique. Remember: every other pair of bags is a clique.



Each arc will have length $2+\epsilon$ Arc A_i has length ϵ

Neighbourhood of a buoy

Theorem

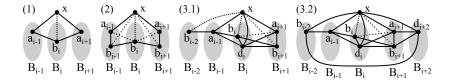
Let B be an ℓ -buoy in a (pan,even-hole)-free graph and let x be a neighbour B. Then:

- x adjacent to 5 bags implies $\ell = 5$ and x universal to B (*).
- *x* adjacent to 2 bags implies these bags are consecutive and form a clique.
- *x* adjacent to 3 bags implies these bags are consecutive and *x* universal to the middle bag.

(*) These vertices are the only way we have a unit circular arc graph joined with a clique in our decomposition.

Neighbourhood of a buoy

x adjacent to 3 bags implies these bags are consecutive and *x* universal to the middle bag.



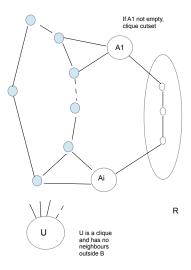
Decomposition Theorem

Theorem

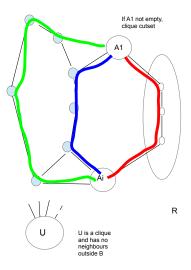
Consider a (pan,even-hole)-free graph G. Let B be a "maximal" buoy of G:

- B contains all vertices of G
- *G* contains a clique cutset.
- G is the join of a clique and a 5-buoy (unit circular arc graph).

Structure of Maximal Buoys

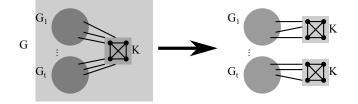


Structure of Maximal Buoys





Main Tool Clique Cutset Decomposition



- Computation in O(nm) time with < n atoms [Tarjan; JDM 1985]
- Applications: Chromatic number, and the presence of a hole. [Whitesides; 1984]

Colouring

Note: only need to consider atoms and our atoms are unit circular arc graphs.

- 1. Run Clique Cutset decomposition : O(nm) time, with < n atoms
- 2. Colour the atoms of the decomposition: $O(n^{1.5} + m)$ per atom.
- 3. Now, $\chi(G) = \max{\chi(H) : H \text{ is an atom of } G}$.

Total time: $\mathcal{O}(n^{2.5} + nm)$. χ -bounded: $\chi(G) \leq 1.5 \omega(G)$.

Unit Circular Arc representation construction: O(n + m) [Lin, Szwarcfiter; SIAM JDM 2008] Unit Circular Arc colouring from a representation: $O(n^{1.5})$ [Shih, Hsu; JDAM 1989]

Recognition

- 1. Run Clique Cutset decomposition : O(nm) time, with < n atoms
- 2. For each atom:
- 3. verify that no holes of the atom form a pan with a vertex outside
- 5. Build our special buoy *B* from this hole: O(n + m).
- 6. If *B* cannot be built, we produce a pan or an even hole
- 7. Build an unit circular arc representation.

Total time: $\mathcal{O}(nm)$.

Chordality Testing: O(n + m): [Rose, Tarjan, Lueker; SIAM JComp 1976]

Concluding Remarks

(pan,even-hole)-free graphs decompose into *almost* unit-circular arc graphs by clique cutsets. This allows:

- Recognition in $\mathcal{O}(nm + m^{1.69})$ time.
- Colouring in $\mathcal{O}(n^{2.5} + nm)$ time.
- Bounding parameters : $\omega(G) \le \chi(G) \le 1.5\omega(G)$.

Open Problems:

- Odd-hole-free: recognition, independent set, structural characterization.
- Even-hole-free: independent set, colouring.
- (pan,even-hole)-free: clique cover.
- Characterize circular arc graphs by minimal forbidden induced subgraphs.