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H-Free Graphs

Definition
For a graph H, a graph G is H-free, when G does not contain
H as an induced subgraph.

H H-free Proper Colouring
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Claws, holes, and pans

We will deal with (claw, even hole)-free graphs
Even holes: holes with even length
(Pan, even hole)-free graphs
S. Olariu introduces pan, proved SPGC for pan-free graphs.
Stability number of pan-free graphs is in P
(Brandstadt, Lozin, Mosca)
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Related Graph Classes and Recognition

Chordal: G is hole-free; i.e., (C4,C5, . . .)-free: linear time
[Rose, Tarjan, Lueker; SIAM JComp 1976]
Odd-hole-free; i.e., (C5,C7, . . .)-free: OPEN
Perfect: (odd-hole,odd-anti-hole)-free: polytime [Chudnovsky,
Cornuejols, Liu, Seymour, Vušković; Combinatorica 2005]
Even-hole-free; i.e., (C4,C6, . . .)-free: polytime (more on this)

Note: Information System on Graph Classes
http://www.graphclasses.org/ defines even-hole free
as (C6,C8, . . .)-free. C4 is not excluded, but we do exclude C4!!

http://www.graphclasses.org/
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Finding Even-Holes

O(n40) [Conforti, Cornuéjols, Kapoor, and Vušković; JGT
2002].
O(n31) [Chudnovsky, Kawarabayashi, and Seymour; JGT
2005].
O(n19) [da Silva and Vušković; JCTB 2013].
O(m3n5) [Chang and Lu; SODA 2012, arxiv 2013].

In planar: O(n3) [Porto; LATIN 1992]
In claw-free: O(n8) [van ’t Hof, Kamiński, Paulusma;
Algorithmica 2012]
In circular-arc: O(mn2loglogn) [Cameron, Eschen, Hoàng,
Sritharan; 2007]
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Combinatorial Optimization Problems

Clique Ind. Set Colouring Clique cover
Even-Hole-free P ? ? NP-hard NP-hard
Odd-Hole-free NP-hard P NP-hard ??
Pan-free NP-hard P NP-hard NP-hard
(Pan, Even hole)-free P P P ??

Even-hole-free graphs: χ(G) ≤ 2ω(G)− 1 [Addario-Berry,
Chudnovsky, Havet, Reed, Seymour; JCTB 2008]
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Our Results

Theorem
For a (pan,even-hole)-free graph G, one of the following hold:

1 G is a clique.
2 G contains a clique cutset.
3 G is a unit circular arc graph
4 G is the join of a clique and a unit circular arc graph.

Recognition in O(nm) time.
Colouring in O(n2.5 + nm) time.
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Circular Arc Graphs

“unit” means all arcs have the same length
Colouring is NP-complete for circular arc graphs
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Our Decomposition Theorem

Theorem
For a (pan,even-hole)-free graph G, one of the following hold:

1 G is a clique.
2 G contains a clique cutset.
3 G is an unit circular arc graph.
4 G is the join of a clique and a unit circular arc graph.

Auxiliary structure generalizing holes: buoy
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Holes and Buoys

A length `-buoy has ` bags: B0, . . . ,B`−1, each bag is a clique,
and each vertex in a bag has neighbours in adjacent bags (but
not other bags).

B1 B2 B3 B4B0
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Our Decomposition Theorem

Theorem
For a (pan,even-hole)-free graph G, one of the following hold:

1 G is a clique.
2 G contains a clique cutset.
3 G is a buoy*
4 G is the join of a clique and a 5-buoy*.

* These buoys are extremely special, as we will see.
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Structure of a Buoy

Theorem
If B is a `-buoy in a (pan,even-hole)-free graph, then:

Each Bi can be ordered by neighbourhood inclusion.
Either (Bi ∪ Bi+1) or Bi ∪ Bi−1 is a clique.

For efficient recognition:

Theorem
If B is an `-buoy where each Bi can be ordered by
neighbourhood inclusion, then every hole in B has length `.
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Structure of a Buoy

Theorem
If B is a `-buoy in a (pan,even-hole)-free graph, then:

Each Bi can be ordered by neighbourhood inclusion.
Either (Bi ∪ Bi+1) or (Bi ∪ Bi−1) is a clique.
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Buoys To Circular Arcs

Remember: each bag is orderable by neighbourhood inclusion.
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Buoys To Unit Circular Arcs

Case: Bi ∪ Bi+1 is not a clique.
Remember: every other pair of bags is a clique.
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Each arc will have length 2+ε
Arc Ai has length ε
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Neighbourhood of a buoy

Theorem
Let B be an `-buoy in a (pan,even-hole)-free graph and let x be
a neighbour B. Then:

x adjacent to 5 bags implies ` = 5 and x universal to B (*).
x adjacent to 2 bags implies these bags are consecutive
and form a clique.
x adjacent to 3 bags implies these bags are consecutive
and x universal to the middle bag.

(*) These vertices are the only way we have a unit circular arc
graph joined with a clique in our decomposition.
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Neighbourhood of a buoy

x adjacent to 3 bags implies these bags are consecutive and x
universal to the middle bag.
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Decomposition Theorem

Theorem
Consider a (pan,even-hole)-free graph G. Let B be a "maximal"
buoy of G:

1 B contains all vertices of G
2 G contains a clique cutset.
3 G is the join of a clique and a 5-buoy (unit circular arc

graph).
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Structure of Maximal Buoys

A1

U is a clique 
and has no 
neighbours 
outside B

U

Ai

R

If A1 not empty, 
clique cutset
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Main Tool Clique Cutset Decomposition

KG

G1

Gt

...

K
G1

Gt

...

K

Computation in O(nm) time with < n atoms [Tarjan; JDM
1985]
Applications: Chromatic number, and the presence of a
hole. [Whitesides; 1984]
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Colouring

Note: only need to consider atoms and our atoms are unit
circular arc graphs.

1. Run Clique Cutset decomposition : O(nm) time, with < n atoms
2. Colour the atoms of the decomposition: O(n1.5 + m) per atom.
3. Now, χ(G) = max{χ(H) : H is an atom of G}.

Total time: O(n2.5 + nm).
χ-bounded: χ(G) ≤ 1.5 ω(G).

Unit Circular Arc representation construction: O(n + m) [Lin,
Szwarcfiter; SIAM JDM 2008]
Unit Circular Arc colouring from a representation: O(n1.5) [Shih,
Hsu; JDAM 1989]
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Recognition

1. Run Clique Cutset decomposition : O(nm) time, with < n atoms
2. For each atom:
3. verify that no holes of the atom form a pan with a vertex outside it. 4. Find a hole: O(n + m). Hole has to be odd.
5. Build our special buoy B from this hole: O(n + m).
6. If B cannot be built, we produce a pan or an even hole
7. Build an unit circular arc representation.

Total time: O(nm).

Chordality Testing: O(n + m) : [Rose, Tarjan, Lueker; SIAM
JComp 1976]
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Concluding Remarks

(pan,even-hole)-free graphs decompose into *almost*
unit-circular arc graphs by clique cutsets. This allows:

Recognition in O(nm + m1.69) time.
Colouring in O(n2.5 + nm) time.
Bounding parameters : ω(G) ≤ χ(G) ≤ 1.5ω(G).

Open Problems:
Odd-hole-free: recognition, independent set, structural
characterization.
Even-hole-free: independent set, colouring.
(pan,even-hole)-free: clique cover.
Characterize circular arc graphs by minimal forbidden
induced subgraphs.
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